

COMFORT

ISO 16890 New standard for Air Filter Efficiency

ISO 16890 (all parts) refers to particulate air filter elements for general ventilation having an ePM₁ efficiency less than or equal to 99 % and an ePM₁₀ efficiency greater than 20 % when tested per the procedures defined within parts 1-4 of ISO 16890.

EN779: 2012 - test

0,4 µm particle (by classification)

Dust feeding and particle efficiency measure – in steps up to 450 Pa final pressure drop => average efficiency Conditioning (discharging) of a piece of media (F7 – F9) in Isopropanol liquid Minimum Efficiency (ME) (Defines the filter class in F7 – F9) Dust: ASHRAE

ISO16890 - test

Particulate matter efficiency (ePM)

 ePM_x – mass concentration of particles with an optical diameter of > 0,3 µm and x µm Average efficiency = Mean value of initial eff and conditioned efficiency (5 cycles á 30 sec) Conditioning (discharging) of a complete filter in IPA vapour chamber – 24 hours

Dust: ISO A2 / AC Fine

EN779: 2012 - test reporting

Group	Class	Final test pressure drop	Average arrestance (Am) of synthetic dust	Average efficiency (<i>E</i> _m) of 0,4 µm particles	Minimum Efficiency ²⁾ of 0,4 μm particles	
		Ра	%	%	%	
Coarse	G1	250	$50 \le A_{\rm m} < 65$	- Has	to be	
	G2	250	65 ≤ <i>A</i> _m < 80		ached	
	G3	250	$80 \le A_{\rm m} < 90$		Sets	
	G4	250	90 ≤ <i>A</i> _m		class F7, F8 a	
Medium	M5	450	-	$40 \le E_{\rm m} < 60$		
	M6	450	-	60 ≤ <i>E</i> _m < 80		
Fine	F7	450	-	$80 \le E_{\rm m} < 90$	35	
-	F8	450	-	90 ≤ <i>E</i> m < 95	55	
_	F9	450	-	95 ≤ <i>E</i> m	70	

Table 1—	Classification	of	air	filters ¹⁾
	Classification	v	an	IIIICI 3

ISO16890 – test reporting

1.1 Classification

The initial gravimetric arrestance and the three efficiency values ePM_{1} , $ePM_{2,5}$ and ePM_{10} and the minimum efficiency values $ePM_{1, min}$ and $ePM_{2,5, min}$ shall be used to classify a filter in one of the four groups given in Table 1.

	Has to be	Tabl	le 1 – Filter groups		
	- reached		Requirement		Class reporting
Group name		ePM _{1, min}	ePM _{2,5, min}	ePM ₁₀	value
ISO Coarse		—	_	< 50%	Initial grav. arrestance
ISO ePM10		—	—	≥ 50%	ePM ₁₀
ISO ePM2,5		_	≥ 50%	_	ePM _{2,5}
ISO ePM1		≥ 50%	—	_	ePM₁

The standard is valid for air flow rates between $900 - 5400 \text{ m}^3/\text{h}$ (0,25 m³/s - 1,5 m³/s)

ISO16890 50% becomes + 60%

Filter class EN779 / ISO16890

ISO 16890, new global test standard for air filter

ISO W

CLEAN AIR SOLUTIONS

International Organization for Standardization The standard has (4) parts:

- 1. Classification (16890-1)
- 2. Test method (16890-2)
- 3. Dust loading (16890-3)
- 4. Conditioning, ME (16890-4) (ME, Minimum Efficiency)

ISO 16890, new global test standard for air filter

16890-2 Efficiency test method

- Combines ASHRAE 52.2 and EN-779
 to one document
- Pressure drop and efficiency same as in EN779 & ASHRAE
- DEHS particles for PM₁
- KCL (salt) particles for PM_{2.5} and PM₁₀

Number particle concentration and mass concentration

ISO 16890, new global test standard for air filter

ISO 12103 PT 1. A2 / AC Fine Mineral Flour , 0-80µm 16890-3 Dust holding capacity.....

- Additional for filter in group ePM₁₀, ePM_{2.5} and ePM₁
- Dust loading (Arrestance) Corse
- 100% ISO Fine (AC fine)
- Gives higher dust holding in g (≈double)
- Final resistance 300 Pa > 50% ePM_x
- Final resistance 200 Pa Coarse

ISO 16890-3:201	x - AIR F	ILTER TEST	RESULT S	ими	IARY	Testing Name Address Phone	Organization	
GENERAL						I		
Test ID:		Date of test:			Ор	erator:		
			Air flow	meas	surement:	Test dev	vice obtained from:	
DEVICE TESTED								
Model:		Manufacturer:			Filt	er dimensions	s (W x H x D) (mm):	
Type of media:		Net effective r	media area (n	1 ²):	Co	nstruction: (#p	leats, pockets, etc.)	
Filter/media electrostatic	Filter/media electrostatic charge: Media colour				Ме	Media adhesive:		
Device Condition: (clean/in	itial, used, con	ditioned per ISO 16	890-4, tested per	ISO 16	6890-2, etc.,)		
Other descriptive information	tion:							
TEST DATA SUMMARY								
Test air flow rate (m ³ /s):	Test air te	mperature (ºC):	Test air RH	(%) :		Loading	g dust:	
RESULTS	1				í	,	Ň	
Resistance	to air flow (I	°a)				pading results		
Rated Initia		al:	Initial arrestance [%]		verage estance [%]	Test Dust capacity [g]		
niedeurou.	Rated Fina	al:						
	Rated Fina	al:						
		Test	Device Phot)	· · · ,	·	1	

ISO 16890, new global test standard for air filter

16890-4 Conditioning / Discharge

- IPA vapor from isopropanol Tuff method for discharging, 24h
- Not destructive, fiber structure remain
- Complete filter in the rig

ISO 16890, the new global filter test standard

Group name	Examples
ISO Coarse	ISO Coarse 55 %
ISO ePM ₁₀	ISO ePM ₁₀ 55 %
ISO ePM _{2.5}	ISO ePM _{2.5} 55 %
ISO ePM ₁	ISO ePM ₁ 55 %

16890-1 Classification

- Efficiency in the report is the AVERAGE of initial and discharged
- ePM₁, ePM_{2.5} and ePM₁₀ EFFICIENCY shall be stated in the report
- ePM₁ and ePM_{2.5} MINIMUM efficiency ME shall be stated in the report
- Value shall be ROUNDED DOWN to a multiple of 5%

ISO 16890 – Air Filter Test Results			Testing org Name Address Phone	ganisatio	n:		
GENERAL							
Report no.:		All actual ePM	Date of rep	ort: yyyy-i	nm-dd		
Supervisor:		values to be	Device obta	ained (wh	en and h	ow obtained)	
Test(s) requested by:		reported]				
DEVICE TESTED			·				The
Model: N	Manufa	acturer:	Constructio	n:			The
Type of medium:	Vet effe	ective filtering area.	Filter dimer	nsions (wi	dth imes hei	ight × depth):	sification
			mn	n ×	mm ×	mm 🦳	<u></u>
TEST DATA AND ATTACH	ED TE	ST REPORTS					/
	-	oort to ISO 16890-2				Report no.	_
m ³ /c				Report no.	_		
	lest rep	oort to ISO 16890-4	~			Report no.	_
RESULTS		/	<u> </u>				
Initial pressure differential: Pa	In	itial grav. arrestance: %	$ePM_{1, min}$	ePM <u>;</u> %	2.5, min	ISO rating %	
Final test pressure differentia	al: Te	est dust capacity:	ePM ₁ e	PM _{2.5}	ePM ₁₀	ISO ePM%	•
Pa/ Pa/ F	^o a	g/g/gl	%	%		%	
Remarks:			`				
efficiency (%)						Curve 1 Initial fractional efficiency E_i (ISO 16890-2) Curve 2 Conditioned fractional efficiency $E_{\rm Dyi}$ (ISO	

ISO 16890, the new global filter test standard

RESULTS				
Initial pressure differential:	Initial grav. arrestance:	ePM _{1, min} e	PM _{2.5, min}	ISO rating
Pa	%	61 %	73 %	4.00
Final test pressure differential	Test dust capacity:	ePM ₁ ePM _{2.5}	ePM ₁₀	ISO еРМ <u>160</u> %
Pa/ Pa/ Pa	g/g/g	63 % 75	% 85 %	

RESULTS			
Initial pressure differential:	Initial grav. arrestance:	ePM _{1, min} ePM _{2.5, min}	ISO rating
Pa	%	43 % 58 %	
Final test pressure differential:	Test dust capacity:	ePM ₁ ePM _{2.5} ePM ₁₀	і ISO еРМ 2,5 55°
Pa/ Pa/ Pa	g/g/g	47 % 63 % 78 %	b

< 50%

Classification table

PM1 classification	PM2,5 classification	PM10 classification	Coarse
ePM1[95%]	ePM2.5[95%]	ePM10[95%]	Arrestance reported
ePM1[90%]	ePM2.5[90%]	ePM10[90%]	in full 10%
ePM1[85%]	ePM2.5[85%]	ePM10[85%]	
ePM1[80%]	ePM2.5[80%]	ePM10[80%]	
ePM1[75%]	ePM2.5[75%]	ePM10[75%]	
ePM1[70%]	ePM2.5[70%]	ePM10[70%]	
ePM1[65%]	ePM2.5[65%]	ePM10[65%]	
ePM1[60%]	ePM2.5[60%]	ePM10[60%]	
ePM1[55%]	ePM2.5[55%]	ePM10[55%]	
ePM1[50%]	ePM2.5[50%]	ePM10[50%]	
Requirement: > 50% initial eff	Requirement: > 50% initial eff	Requirement: > 50% initial eff	No discharge requirement
> 50% discharged eff	> 50% discharged eff		requirement
		No discharge	
		requirement	

Principle is – round down to nearest 5%

PM1(95%) PM2,5(95%) F F PM1(85%) PM2,5(85%) M5 &⊨ 9 PM1(80%) PM2,5(80%) PM 2,5 M6⁷ PM1(75%) PM2,5(75%) PM 10 PM1(70%) PM2,5(70%) PM1 PM2,5(65%) PM1(65%) PM1(60%) PM2,5(60%) PM1(55%) PM2,5(55%) PM1(50%) PM2,5(50%) PM10(85%) PM10(80%) PM10(75%) PM10(95%) PM10(65%) PM10(55%) PM10(60%) PM10(70%) PM10(50%)

Internal working group draft

04.06.2016

EUROVENT 4/21 - 2017

Energy Efficiency Evaluation of Air Filters for General Ventilation Purposes

ISO16890 and Eurovent Energy Efficiency Classification

Filter class 2015	M5	M6	F7	F8	F9
ME			ME ≥ 35%	ME ≥ 55%	ME ≥ 70%
	MM=250 g AS	HRAE		MF=100 g ASHRAE	
A+	0 – 450 kWh	0 – 550 kWh	0 – 800 kWh	0 – 1000 kWh	0 – 1250 kWh
A	>450 kWh - 600 kWh >	550 kWh – 650 kWh	>800 kWh - 950 kWh	>1000 kWh - 1200 kWh	>1250 kWh – 1450 kWh
В	>600 kWh - 700 kWh	>650 kWh - 800 kWh	>950 kWh - 1200 kWh	>1200 kWh - 1500 kWh	>1450 kWh - 1900 kWh
С	>700 kWh - 950 kWh	>800 kWh - 1100 kWh	>1200 kWh - 1700 kWh	>1500 kWh -2000 kWh	>1900 kWh - 2600 kWh
D	> 950 - 1200 kWh	> 1100 kWh - 1400 kWh	> 1700 kWh - 2200 kWh	> 2000 kWh - 3000 kWh	> 2600 kWh - 4000 kWh
E	>1200 kWh	>1400 kWh	>2200 kWh	>3000 kWh	>4000 kWh

Round Robin tests are provided by six labs and 36 filter types
 Target is to get close to existing classification table

ISO16890 and Eurovent Eurovent a Certita **Energy Efficiency Classification**

Implements 2018

	ePM ₁₀	ePM _{2,5}	ePM ₁
Atm. Dust conc.	35 µg/m³	21 µg/m ³	16 µg/m³
Volume flow rate	3400 m³/h	3400 m ³ /h	3400 m³/h
Operating hours / a	6000 h	6000 h	6000 h
Total dust fed PM _x	714 g	428 g	326 g
AC Fine dust fed ISO 12249-2 (draft)	700 g 400 g		300 g
EN779:2012	250	100g	
	M5-I	F7 – F9	

CERTIF

ISO 16890 Timeline

CLEAN PROCESS

ISO 16890 in Clean Process Industries

- Hospitals
- Food and Beverage
- Life Science

HOSPITALS

- "Open window effect" patients are more vulnerable to dangerous airborne particles.
- PM1 particles are the smallest and most dangerous particulate matter
- PM1 can bypass the human body's natural defenses
- Viruses and smaller bacteria belong to PM1 fraction (0,3 1µm)
- ✓ Only PM1 filters provide significant protection against those.
- ✓ Compared to F7 an ePM1 50% filter means an improvement of **15-20% less dangerous PM1 particles**
- ✓ Also complies with the VDI6022 hygenic guideline that requires ePM1 filter for final stage in hospitals.
- ✓ Cleaner system means saving money through more efficient heat exchangers and less cleaning.
 - ✓This increases protection of patients, better recovery time and more efficient hospitals.

FOOD & BEVERAGE INDUSTRY

- The F&B industry needs Clean Air to protect organoleptic characteristics of products
- The biggest enemies are spores and bacteria (within PM2.5 fraction)
- But is 50% efficiency enough?
- At least +70% efficiency against PM2.5 should be used thus, an ePM1 filter is the only choice
- ✓ With ePM1 filter, the industry gets 15 20% less PM1 particles and in consequene:
- ✓ Better quality of products through increased cleanliness in manufacturing
- ✓ Improved shelf life of products, therefore less waste / more revenue
- ✓ Increased pre-filter efficiency translates to BIGGER energy savings and LONGER life-time of HEPA filters
- ✓ Compliance and readyness for audits soon only with ISO16890 filters
- ✓ Protection of their own people

EN779 - TYPICAL EFFICIENCIES OF AIR FILTERS AGAINST PM1 AND OTHER FINE DUST MASS CONCENTRATIONS

Filter class	PM1	PM2.5	PM10
M5	<20%	<40%	≥50%
M6	<40%	≥50%	≥60%
F7	≥50%	≥70%	≥80%
F8	≥70%	≥80%	≥90%
F9	≥80%	≥90%	≥95%

PHARMACEUTICAL INDUSTRY

- Most sensitive products require highest degree of cleanliness
- ISO16890 ensures a better protection than EN779 in many ways:
- ePM1 50 is up to 25% more efficient than F7
- F9 before the HEPA filter, which is now an ePM1 80% that itself has an increase in requirements (untraceable media sample discharge at EN779, ISO requires <u>full filter</u> discharge)
- ✓ This results in improved predictability, control and timing of the system i.e. no sudden efficiency drop after discharge
- ISO 16890 enhances the quality by requiring a more stable continuous efficiency, resulting in better HEPA protection
- ✓ ISO 16890 improves operation costs with bigger energy savings and less HEPA changes for the pharmaceutical industry
- ✓ ISO 16890 ensures global compliance multinational pharmaceutical companies should now be able to compare, improve and standardize their quality-related SOPs globally.

CAMFIL CLEAN AIR SOLUTONS WILL HELP

